Math 210B Lecture 10 Notes

Daniel Raban

January 30, 2019

1 Profinite Groups and Infinite Galois Theory

1.1 Galois groups of infinite field extensions

Example 1.1. Consider $\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$. It maps to each $\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)$, so $\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p) \to \lim_{p \to \infty} \operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)$. This is injective because an element of $\operatorname{Gal}(\overline{\mathbb{F}}_p/\mathbb{F}_p)$ is determined by what it does to \mathbb{F}_{p^n} for all n. It is surjective because we can keep lifting elements in $\operatorname{Gal}(\mathbb{F}_{p^n}.\mathbb{F}_p)$.

This example had nothing to do with \mathbb{F}_p . In fact, for any Galois extension K/F,

$$\operatorname{Gal}(K/F) \cong \varprojlim_{\substack{E \subseteq K \\ E/F \text{ finite, Galois}}} \operatorname{Gal}(E/F).$$

Then

$$\lim_{\stackrel{\leftarrow}{n}} \cong \lim_{\stackrel{\leftarrow}{n}} \mathbb{Z}/n\mathbb{Z} = \hat{\mathbb{Z}},$$

the Prüfer ring. $\mathbb{Z} < \hat{\mathbb{Z}}$ says that $\langle \varphi_p \rangle < \operatorname{Gal}(\overline{\mathbb{F}}_p, \mathbb{F}_p)$. Then $\overline{\mathbb{F}}_p^{\langle \varphi_p \rangle} = \mathbb{F}_p$. So $\operatorname{Gal}(K, K^H)$ can be bigger than H.

Suppose we have an inverse system $(G_i, \phi_{i,j})$ of groups, where I is a directed set. That is, given $i, j \in I$, there exists some k such that $k \leq i$ or $k \leq j$, and $\phi_{i,j} : G_i \to G_j$. Recall that the inverse limit $\lim_{i \to I} G_i \subseteq \prod_{i \in I} G_i$ is $\lim_{i \to I} G_i = \{(g_i)_{i \in I} : \phi_{i,j}(g_i) = g_j \forall i, j\}$. Then the Galois group will be $G = \lim_{i \in I} G_i$. If

then $\operatorname{Gal}(EE'/F)$ surjects onto both $\operatorname{Gal}(E/F)$ and $\operatorname{Gal}(E'/F)$.

1.2 Topological and profinite groups

Definition 1.1. A topological group G is a group with a topology such that the multiplication map $G \times G \to G$ and inversion map $G \to G$ sending $(x, y) \mapsto xy$ and $x \mapsto x^{-1}$ are continuous.

Then $\prod_{i \in I}$ has the product topology, which is generated by the base

$$\prod_{j\in J} U_j \times \prod_{i\in I\setminus J} X_i$$

where $U_j \subseteq X_j$ is open.

Then $G = \varprojlim_i G_i$ has the subspace topology induced from the product topology. G is a topological group with respect to this topology (exercise).

Definition 1.2. A **profinite group** is an inverse limit of finite groups $G = \varprojlim G_i$ endowed with the above topology, the **profinite topology** relative to $(G_i, \phi_{i,j})$

Example 1.2. Let $\hat{\mathbb{Z}} = \varprojlim \mathbb{Z}/n\mathbb{Z}$. Then $\pi_n : \hat{\mathbb{Z}} \to \mathbb{Z}/n\mathbb{Z}$ is continuous, and $n\hat{\mathbb{Z}} = \ker(\pi_n) = \pi_n^{-1}(\{0\})$ is open. Then $n\hat{\mathbb{Z}}$ is a base of open neighborhoods of 0. Then $\{a + n\hat{\mathbb{Z}}\}$ is a basis of open neighborhoods of $a \in \mathbb{Z}$. Since \mathbb{Z} surjects onto $\mathbb{Z}/n\hat{\mathbb{Z}}$, we can find $a_n \in \mathbb{Z}$ such that $a_n \mapsto a + n\hat{\mathbb{Z}}$ for all n. So \mathbb{Z} is dense in $\hat{\mathbb{Z}}$; that is, its closure is $\hat{\mathbb{Z}}$.

Theorem 1.1. A topological group G is profinite if and only if it is compact, Hausdorff, and totally disconnected (every connected component is a point).

Let's assume the following fact from topology.

Proposition 1.1. A compact, Hausdorff space is totally disconnected if and only if it has a base of clopen neighborhoods.

We will prove one direction of the theorem.

Proof. Assume G is profinite. Products of compact, Hausdorff spaces are compact, Hausdorff. Closed subsets of Hausdorff spaces are compact, and subsets of Hausdorff spaces are Hausdorff. To show that G is closed, note that

$$G = \bigcap_{\phi_{i,j}} \{ (g_i)_{i \in I} : \phi_{i,j}(g_i) = g_j \}.$$

Now let U_j be open for all $j \in J$ with J finite. Then

$$\left(\prod_{j\in J} U_j \times \prod_{i\in I\setminus J} G_i\right)^c = \left(\bigcap_{j\in J} \left(U_j \times \prod_{i\neq j} G_i\right)\right)^c$$

$$= \bigcup_{j \in J} \left(U_j \times \prod_{i \neq j} G_i \right)^c$$
$$= \bigcup_{j \in J} U_j^c \times \prod_{i \neq j} G_i.$$

So $\prod_i G_i$ is totally disconnected. So $G = \lim_{i \to \infty} G_i$ is totally disconnected.

Let $\pi_I : G \to G_i$. Then $\ker(\pi_i) = (\prod_{j \neq i} G_j) \times \{1\}$. Then $\prod_{i \in I \setminus J} G_i \times \prod_{j \in J} \{1\}$ is a basis of neighborhoods of 1. Then $\bigcap \varprojlim_i G_i = \bigcap_{j \in J} \ker(\pi_j)$ is an open subgroup of $\varprojlim_i G_i$ with finite index.

Proposition 1.2. In profinite groups, subgroups are open if and only if they are closed and have finite index.

Proof. (\Leftarrow): If $H \leq G$ is closed of finite index, then $\{gH : gH \neq H\} \subseteq G/H$ is a finite set. Each gH is closed, so $\bigcup_{gH \neq H} gH = H^c$. So H is open. \Box

Definition 1.3. The **Krull topology** on Gal(K/F) is the profinite topology for

$$\operatorname{Gal}(K/F) = \lim_{\substack{E \subseteq K \\ E/F \text{ finite}}} \operatorname{Gal}(E/F).$$

Definition 1.4. If G is a group, the **profinite completion** is

$$\hat{G} = \varprojlim_{\substack{N \leq G \\ \text{finite index}}} N$$

This gives a functor from the category of groups to the category of topological groups.

1.3 The fundamental theorem of Galois theory for infinite degree extensions

Theorem 1.2 (fundamental theorem of Galois theory). Let K/F be Galois. There are inverse, inclusion reversing correspondences $\{E: K/E/F\} \rightarrow \{H: H \leq \text{Gal}(K/F), H \text{ closed}\}$ sending $E \mapsto \text{Gal}(K/E)$ and $H \mapsto K^H$. Respective correspondences exist for finite or normal extensions to open or normal subgroups. If E/F is normal, then $\text{Gal}(K/F)/\text{Gal}(K/E) \cong \text{Gal}(E/F)$, where this is a topological isomorphism.

Example 1.3. The absolute Galois group of \mathbb{Q} is $G_{\mathbb{Q}} = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$.

Example 1.4. The absolute Galois group of \mathbb{R} is $G_{\mathbb{R}} \cong \mathbb{Z}/2\mathbb{Z}$.

Example 1.5. The absolute Galois group of \mathbb{F}_p is $\hat{\mathbb{Z}} \cong \prod_{p \text{ prime}} \mathbb{Z}_p$, where $\mathbb{Z}_p = \varprojlim_n \mathbb{Z}/p^n \mathbb{Z}$.

Theorem 1.3 (Kronecker-Weber). Let μ_n be a primitive *n*-th root of unity, and let $\mathbb{Q}^{ab} = \bigcup_n \mathbb{Q}(\mu_n)$. Then $G_{\mathbb{Q}^{ab}} = \operatorname{Gal}(\mathbb{Q}^{ab}/\mathbb{Q}) \cong \hat{\mathbb{Z}}^{\times}$